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Contingency	  analysis
• N-1 security has been the core power systems 

operating principle for >50 years 

• While it has served us well, it also has limitations: 

• Not all contingencies are equally likely. 

• Not all limit violations are equally important—
some produce blackouts, others don’t. 

• Sometimes components fail in sets (e.g., storms) 
or in unexpected ways (Aug. 14 2003 blackout). 

• Binary: Imperfect data (e.g., from neighboring 
areas) can change the apparent state of system 
from insecure to secure. (2011 SW blackout)
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Beyond	  contingency	  analysis

• Valuable insight comes from contingency 
analysis, so replacing it would be unwise.  

• However, operators need additional 
indicators of risk. 

• Lots of ongoing work:  
PMU angle difference analysis, statistical indicators 
(variance, autocorrelation), energy function/Lyaponav 
methods, … 

• Focus: Given a state estimator or day-ahead 
planning model, quantify and explain the risk 
posed by all potential cascading blackouts.
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Beyond	  contingency	  analysis

• Focus: Given a state estimator or day-ahead 
planning model, quantify and explain the risk 
posed by all potential cascading blackouts. 

• Why this is hard: 

• All n-1 contingencies and most  
n-{2,3,4}s do not cause blackouts.  
Many samples needed to find one blackout. 

• Power-law in blackout sizes means that we 
need many blackout simulations to describe 
the risk. 

• Explaining why is always difficult (but 
probably the most important thing we can do)
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Illustration
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Case 1 (noon tomorrow)  
High blackout risk

Case 2 (2 pm tomorrow) 
Low blackout risk 

Both cases are secure. 
What makes the two cases different? 

How can we make Case 1 more like Case 2?
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1. Start with a grid model. 



2.	  Now	  find	  many	  of	  the	  outage	  combinations	  
that	  cause	  blackouts	  (the	  malignancies)
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The	  Random	  Chemistry	  algorithm
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3.	  Use	  the	  results	  to	  quantify	  
blackout	  risk
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4.	  Estimating	  the	  number	  of	  blackout-‐causing	  
contingencies	  by	  modeling	  the	  rate	  at	  which	  

unique	  malignancies	  are	  found
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Comparing	  RC	  to	  Monte	  Carlo
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Now	  that	  we	  can	  estimate	  blackout	  
risk,	  what	  insight	  can	  we	  gain?
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Risk	  vs.	  load,	  given	  SCOPF
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Adding the SCOPF 
changes the results 

substantially from prior 
work showing a phase 

transition in risk vs. load



Why?

• At high load levels SCOPF leaves larger margins 
on long inter-area tie lines (to allow for potential 
contingencies)
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Total absolute flow on lines with large (>200MW)  
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Finding	  the	  contribution	  of	  
elements	  to	  risk
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Differentiate the risk equation with respect to element  
outage probabilities



Distribution	  of	    
“risk	  sensitivity”

17



18

Yet another 
power-law tail



Can	  we	  use	  this	  insight	  to	  
reduce	  risk?

• Take the 3 lines that contribute most to blackout risk 

• Re-dispatch generators to leave more margin between 
the flow on these lines and the limit (cut the limit in half) 

• Fuel costs increase by 1.6%  

• Large (S>5%) blackout risk decreases by 61% 

• Very large (S>40%) blackout risk decreases by 83% 

• Perhaps we would be better off without these lines?
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Before	  and	  after
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Do	  the	  blackout-‐causing	  n-‐2	  contingencies	  
change	  at	  different	  load	  levels?
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39	  n-‐2	  malignancies	  at	  75%	  load
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540	  n-‐2	  malignancies	  at	  100%
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378	  n-‐2	  malignancies	  at	  115%
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Which	  components	  negatively	  interact	  with	  
a	  given	  component	  at	  different	  load	  levels?
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Branches	  that	  negatively	  
interact	  with	  *	  at	  90%	  load
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Branches	  that	  negatively	  	  
interact	  with	  *	  at	  100%	  load
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Branches	  that	  negatively	  
interact	  with	  *	  at	  115%	  load
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Returning	  to	  the	  Illustration
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Case 1 (noon tomorrow)  
High blackout risk

Case 2 (2 pm tomorrow) 
Low blackout risk 

We now have a way to describe the differences  
in risk between these two cases and explain why the 

two cases are different. 



Conclusions
• It is possible to estimate cascading failure risk with a 

reasonable amount of computation (e.g., overnight given 
tomorrow’s peak-load model).  
  Random Chemistry approach is >100x faster than MC 
  Does this hold up for correlated event probabilities? 

• Doing so gives insight that can result in real risk reductions: 
  More load is not always worse (8/14/2003, 9/8/2011) 
  Adjusting the flow limits on critical lines 
  Perhaps switching them out entirely? 

• Providing visual feedback to operators may produce new 
isight and ideas for risk reduction

30paul.hines@uvm.edu
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Importantly,	  this	  method	  is	  completely	  model-‐
agnostic.	  Describing	  risk	  in	  interdependent	  systems
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Work	  in	  Progress:	  Influence	  
Graphs
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A	  larger	  influence	  graph
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graph showing links with a weight of 1000 or greater
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